
PARALLEL PROGRAMM ING STRATEGIES FOR

IRREGULAR ADAPTIVE APPLICATIONS

R. Biswas

NASA Ames Research Center

Moffett Field, CA 94035-1000

rbiswas@nas.nasa.gov

Achieving scalable performance for dynamic irregular applications is eminently challenging [1].

Traditional message-passing approaches have been making steady progress towards this goal;

however, they suffer from complex implementation requirements. The use of a global address

space greatly simplifies the programming task, but can degrade the performance for such

computations. In this work, we examine two typical irregular adaptive applications, Dynamic

Remeshing and N-Body, under competing programming methodologies and across various

parallel architectures [2]. The Dynamic Remeshing application simulates flow over an airfoil,

and retmes localized regions of the underlying unstructured mesh. The N-Body e×per_ment

models two neighboring Plummer galaxies that are about to undergo a merger. Both problems

demonstrate dramatic changes in processor workloads and interprocessor communication with

time; thus, dynamic load balancing is a required component.

We investigate several critical factors of the parallel code development, including performance,

programmability, scalability, algorithmic features, and portability. We compare the most popular

implementation strategy, message passing with MPI, against a number of alternate approaches.

First, we evaluate the effectiveness of using the SHMEM communication library, which uses

symmetric address spaces for individual processes, allowing one-sided communication. Next, we

examine an implementation using the OMP programming strategy, which uses shared-memory

algorithms and OpenMP-style compiler directives on systems supporting global addressing. The

cache-coherent shared address space (CC-SAS) paradigm is tested next. It is similar to OMP but

focuses on spatial locality through methods such as data remapping and replication, which are

traditionally not considered in shared-memory programming. Experimental results using hybrid

programming are then reported. Here, two layers of parallelism are combined by implementing

OpenMP codes within shared-memory multiprocessors (SMPs), while using message passing

between the SMP nodes. Finally, we present results on the Cray MTA that uses multithreading to

hide latency, rather than using data caches.

Experiments were performed on several parallel systems: the distributed-memory Cray T3E, the

hardware-supported CC-NUMA SGI Origin2000, the latest generation of IBM POWER3 8-way

SP cluster, and the Cray MTA multithreaded computer. Results indicate that it is possible to

achieve message-passing performance using shared-memory programming techniques by

carefully following the same high-level strategies, and that multithreaded systems offer

tremendous potential but are not well suited for all classes of applications.

References

[1] L. Oliker and R. B iswas, "Parallelization of a Dynamic Unstructured Algorithm Using Three

Leading Programming Paradigms," IEEE Transactions on Parallel and Distributed Systems,

v. 11, p. 931-940, 2000.

[2] H. Shah, J.P. Singh, L. Oliker, and R. Biswas, "'A Comparison of Three Programming

Models for Adaptive Applications on the Origin2000," CD_ROM Proceedings of SC2000

Conference, Dallas, TX, 2000.


